
r) Probability 
1      2      3      4      5      6     7 

 
Attribute all copies, distributions, & transmitions of the 

work and any remixes or adaptations of the work to Toby 
Lockyer 

 
Full details of the licensing agreement are at: 

http://creativecommons.org/licenses/by-nc-sa/3.0/ 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Step 1) The Probability Scale 
 

The word probability is linked to the word probably. 
If someone says I will probably be there tonight, it 
means they are more likely to be there than not be 

there tonight, it is likely they’ll be there. If someone 
says they will probably not heave cereal for 

breakfast, it means they are less likely to have cereal 
than something else, they are unlikely to have 

cereal. 
 

This language of talking about how likely something 
is to happen is the language of probability. But the 

words likely, unlikely, probably and probably not are 
all a bit vague. So we mathematicians have 

developed a scale from 0 to 1 to describe how likely 
something is in a very precise way. 

 
If something is impossible to happen, that is if it is 
certain not to happen, we call it probability of 0. If 

something is certain to happen, we say the 
probability is 1. Everything else falls somewhere in 
between, the larger the probability, the closer to 1, 
the more likely it is that it will happen. The closer to 
0, the less likely. A probability of 0.5 (which is the 

same as ½) means that the thing is equally likely to 
happen as not happen. 

 
For short hand we write the probability of an event 
as an equation with a capital P on the left, the event 

we are talking about in brackets and the number 
between 0 and 1 representing the likelihood of it 

happening, on the right hand side. 
 

P(me being there tonight) = 0.7    means the 

probability of me being there tonight is 0.7 (which is 

likely) 

P(red token from hat) = 0.3    means the probability of 

picking a red token from a hat is 0.3 (which is 

unlikely). 

 

 

 

 

 

There is no exact place where something moves 

from being likely to very likely (is it 0.85, or 0.9, or 

0.99?) but the numbers gives us a very precise way 

of measuring and comparing the probabilities of 

different things. 

Step 2) The Probability of an Event – P(Event) 
 

We have a very exact way of finding a probability in a 

theoretical situation. Let’s say we have a coin. 

𝑃(𝐸𝑣𝑒𝑛𝑡 𝐴) =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑒𝑣𝑒𝑛𝑡 𝐴𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑒𝑣𝑒𝑛𝑡𝑠
  

 

For example let’s look at a coin. When flipping a coin, 

there are two possible outcomes, flipping a head or 

a tail. So the probability of flipping a head would be 

written as… 

𝑃(𝐹𝑙𝑖𝑝𝑝𝑖𝑛𝑔 𝑎 ℎ𝑒𝑎𝑑) =  
1

2
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If you roll a dice, there are 2 multiples of 3 (3 and 6) 

and 6 possible outcomes in total (1, 2, 3, 4, 5 & 6) 

so… 

𝑃(𝑅𝑜𝑙𝑖𝑛𝑔 𝑎 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 𝑜𝑓 3 𝑜𝑛 𝑑𝑖𝑐𝑒) =  
2

6
=  

1

3
 

Let’s say we had a bag with the letters of the word 

ELEPHANT each on a card. If we picked a card at 

random we could say there are 2 ways of getting an 

E, and 8 possible cards to pick from in total, so. 

𝑃(𝑝𝑖𝑐𝑘 𝑎𝑛 𝐸 𝑓𝑟𝑜𝑚 𝐸𝐿𝐸𝑃𝐻𝐴𝑁𝑇) =  
2

8
=  

1

4
 

All probabilities are built up in this same way, and 

they will always give an outcome between 0 and 1. 

Step 3) Experimental Probability 
 

Often in real life we work with types of outcomes that 

aren’t so predictable or aren’t as equally likely to 

occur as one another. Tokens being picked from a 

hat might act in predictable ways, but arrows being 

fired at a target, or people answering general 

knowledge questions will not give equally likely 

outcomes. For this we can experiment, either firing 

lots of arrows at the target, or asking lots of people 

our questions, and base our probabilities on the 

results of these experiments. 

Experimental probability is found by dividing the 

number of successful experiments by the total 

number of experiments. 

𝑃(𝐸𝑣𝑒𝑛𝑡 𝐴𝑠) =  
𝑁𝑜 𝑜𝑓 𝑒𝑣𝑒𝑛𝑡 𝐴 𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑠𝑡𝑠
 

A spinner has 4 sections but is unevenly weighted. A 

tally was taken to show how many times it landed on 

each section in a number of test spins. 

 

 

 

 

 

 

 

 

 

 

We simply calculate the probabilities by dividing the 

number of times the spinner landed on that section 

(A, B, C or D) by 100 (the total number of tests) 

For example 

𝑃(𝑆𝑒𝑐𝑡𝑖𝑜𝑛 𝐴) =
𝑁𝑜.𝑜𝑓 𝑡𝑒𝑠𝑡𝑠 𝑙𝑎𝑛𝑑𝑖𝑛𝑔 𝑜𝑛 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝐴

𝑇𝑜𝑡𝑎𝑙 𝑡𝑒𝑠𝑡𝑠
=

12

100
 

We can then simplify the fraction or turn it to a 

decimal 
12

100
=

3

25
= 0.12 

Section Frequency 

Probability 

(from 

formula) 

Probability 

(simplified 

fraction) 

Probability 

(decimal) 

A 12 
12

100
 

3

25
 0.12 

B 35 
35

100
 

7

20
 0.35 

C 25 
25

100
 

1

4
 0.25 

D 28 
28

100
 

7

25
 0.28 

 

We can also call this the relative frequency because 

it says how many times a particular outcome 

happens, relative to all the tests you did. 

In fact with experimental probability, we say that the 

relative frequency is the probability. 

Step 4) Sum of Probabilities of all Possible Outcomes 
is 1 

 
A jar contains 2 red, 3 blue and 5 orange sweets. 

 

 

 

 

P(blue) =
3

10
, P(orange) = 

5

10
& P(red) = 

2

10
 

Sum of all the probabilities is  

3

10
+

5

10
+

2

10
 

=
10

10
 

= 1 

In fact, the sum will always be 1. This is because the 

bottom of each fraction is the total frequency of all 

the possible outcomes. The top of each fraction is 

Section Tally Frequency 

A  12 

B  35 

C  25 

D  28 

Total 100 

 

C 

A 

B 
D 

2 Red 

3 Blue 

5 Orange 



the frequency for each possible outcome, but one 

we add them together we have the frequency of all 

the particular outcomes, added together. In other 

words… 

𝑆𝑢𝑚 𝑜𝑓 𝑓𝑟𝑒𝑞 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑜𝑢𝑡𝑐𝑜𝑚𝑒

𝑇𝑜𝑡𝑎𝑙 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑎𝑙𝑙 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑠
 

=
𝑇𝑜𝑡𝑎𝑙 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑎𝑙𝑙 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑎𝑙𝑙 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑠
= 1 

We can use this to find out missing probabilities. 

There are green, purple and yellow counters in a 

cup. One is picked at random. The probability of 

getting either a green or a purple is 
7

10
. What is the 

probability of getting yellow one? 

𝑃(𝑟𝑒𝑑 𝑜𝑟 𝑝𝑢𝑟𝑝𝑙𝑒) + 𝑃(𝑦𝑒𝑙𝑙𝑜𝑤) = 1 

7

10
+ 𝑃(𝑦𝑒𝑙𝑙𝑜𝑤) = 1 

so 𝑃(𝑦𝑒𝑙𝑙𝑜𝑤) = 1 −
7

10
=

3

10
 

Another interesting fact (corollary) from this is that 

the probability of something happening or not 

happening is one. 

On a dice 𝑃(𝑟𝑜𝑙𝑙𝑖𝑛𝑔 𝑎 6) =
1

6
 

𝑃(𝑛𝑜𝑡 𝑟𝑜𝑙𝑙𝑖𝑛𝑔 𝑎 6) = 𝑃(𝑟𝑜𝑙𝑙𝑖𝑛𝑔 𝑎 1𝑜𝑟2𝑜𝑟3𝑜𝑟4𝑜𝑟5) =
5

6
 

1

6
+

5

6
=

6

6
= 1 

This will always be true, as an event happening or 

not happening covers all possible outcomes for that 

event (it must either happen or not happen). 

Step 5) Sample Space Diagrams 
 

So now we move on to probabilities involving more 
than one event.  

 
A sample space diagram, is a type of 2-way table to 
represent all the possible combined outcomes for 

two independent events, where all the outcomes for 
each event are equally likely. 

 
Independent events are ones where the outcome of 

one cannot affect the other. 
 

For example, if you flip a coin, and roll a dice, 
whether you flip a head or a tail it won’t affect the 

role of the dice. Similarly, if you role a 1, 2, 3, 4, 5 or 
6 this won’t affect how likely it is you flip a head or a 

tail on the coin. So these two events are 
independent. 

Now there are two possible outcomes on the coin flip 

and they are both equally likely, with probability 
1

2
 

 
Similarly, all the 6 outcomes of rolling the dice are 

equally likely with probability  
1

6
 

 
This is a perfect example for a sample space 

diagram, each event has equally likely outcomes, 
and the two events are independent (don’t affect 

each other).  
 

Here is how the diagram looks. 
 

  Dice 

  1 2 3 4 

C
o

in
 H

e
a

d
s

 

H,1 H,2 H,3 H,4 

T
a

il
s

 

T,1 T,2 T,3 T,4 

 
You can see that there are 8 equally likely outcomes, 

with the probability of each outcome is 
1`

8
. This 

diagram gives you a visual sense of how all the 
possible outcome pairs fit together. 

 
We can use these diagrams to answer quite complex 
questions. For example, I role two separate dice, one 
blue, one green, and multiply the answer. What is the 

probability that this product is an odd number. 
 

Now the roles of the two dice are independent, and 
the outcomes for each dice are equally likely. 

 
This time, instead of writing Blue 4, Green 3 in the  

sample space diagram, we will write the product of 
the two dice. 

 
Note: The product of two numbers is what you get 

when you multiply them. 
 

 Blue Dice 

G
re

e
n

 D
ic

e
 

X 1 2 3 4 5 6 

1 1 2 3 4 5 6 

2 2 4 6 8 10 12 

3 3 6 9 12 15 18 

4 4 8 12 16 20 24 

5 5 10 15 20 25 30 

6 6 12 18 24 30 36 

 



 
There are 9 odd products. 

There are 36 outcomes in total. 

𝑃(𝑂𝑑𝑑 𝑃𝑟𝑜𝑑𝑢𝑐𝑡) =
9

36
=

1

4
 

However if we had a weighted blue dice that landed 

more frequently on the 6, the outcomes in the 

column representing 6 would have higher 

probabilities than the other columns, and so we 

couldn’t make calculations as if each cell in the 

outcome grid was equally likely. 

When the outcomes are not equally likely we need a 

tree diagram. 

6) Tree Diagrams of Independent Events 
 

A tree diagram is a way of working with multiple 
events, where the possible outcomes for each event 

aren’t equally likely. 
 
They are set up with the event title at the top, with a 

branch for each possible outcome. The outcome 
name is written at the end of the branch, and the 

probability of that outcome written along the branch 
as follows… 

 
 
 

 

 

Let’s take a game where you win if you role a 6 on a 

dice, and lose if you role any other number. 

 

 

 

 

Now we can add a second play of the game, one for 

if we won the first game, and another for if we lost it. 

 

 

 

 

 

 

Let’s look at a particular line along the branches of 

the tree. 

 

 

 

 

 

 

The line we have made purple represents playing the 

first game and losing, then playing the second game 

and winning. 

When you combine probabilities of independent 

events you have to multiply them. 

𝑃(𝑙𝑜𝑠𝑒 1𝑠𝑡, 𝑤𝑖𝑛 2𝑛𝑑) =
5

6
×

1

6
=

5

36
 

We can calculate the probability of all the outcome 

pairs in the same way… 

 

 

 

 

 

 

 

Finally we can add probabilities along the right hand 

side. 

For example… 

P(win exactly 1) = P (win/lose) + P(lose/win) = 
10

36
 

P(same result twice) = P (win/win) + P(lose/lose) = 
26

36
 

Why for we multiply probabilities for combining 

outcomes (and is times) and divide when finding the 

probability of one or another outcome occurring (or 

is add). 

Firstly let’s think about the probability of all the 

possible outcomes. Here there are four possibilities 

for he four separate paths along the tree. We could 

have 

1) Win first, win second 

Play 1 

Lose 

Win 

Play 2 

Lose 

Win 
P(win/win) = 

1

36
 

P(win/lose) = 
5

36
 

P(lose/win) = 
5

36
 

P(lose/lose) = 
25

36
 Lose 

Win 

Play 1 

Lose 

Win 

Event 1 

Outcome A 

Outcome B 

Play 1 

Lose 

Win 

Play 2 

Lose 

Win 

Lose 

Win 

Play 1 

Lose 

Win 

Play 2 

Lose 

Win 

Lose 

Win 



2) Win first, lose second 

3) Lose first, win second 

4) Lose first, lose second 

These are all the possible outcomes, so their 

probabilities should add up to 1. 

Let’s find out if they do… 

1) P(win/win) = 
1

6
×

1

6
= 

1

36
 

 

2) P(win/lose) =
1

6
×

5

6
=  

5

36
 

 

3) P(lose/win) = 
5

6
×

1

6
=   

5

36
 

 

4) P(lose/lose) = 
5

6
×

1

6
=

25

36
 

 
If we add them all up we get 

1

36
+

5

36
+

5

36
+

5

36
=

36

36
= 1 

So this is a consistent way of making sure all the 

probabilities add up to 1 (see step 4). 

Another way of thinking about this is that the 

possibility of one or another outcome, must be 

higher than just one of the outcomes (unless one of 

the probabilities is 0). The only way to be certain 

increasing a number between 0 and 1, using another 

number between 0 and 1, is by adding.  

So or is add! 

And why do we multiply when looking at possible 

consecutive outcomes, in other words looking at 

event A and then event B. Why is and times. 

Well the chance of flipping a tail on a coin is ½ . It 

must be less likely to do this twice in a row than to do 

it once, so the probability must get smaller. The only 

consistant wat to make a number between 0 and 1 

smaller, using another number between 0 and 1 is by 

multiplying. 

In the coin context, exactly how much less likely is it 

that we will get a second tail in a row, it is half as 

likely. So we want ½ of a ½ which we get by 

multiplying. 

So P(Tail, tail) = ½ of a ½ = ½ x ½ = ¼  

So or is times 

There’s a couple of good ways of memorising this. 

 

One is using the “adorable andrex puppy.” This was 

a very cute Labrador retriever puppy used in a very 

successful advertising campaign for andrex loo roll. 

“adorable andrex puppy.” 

Add-or able gives add is or 

and-re-x gives and is times 

Or a brilliant song to the tune of winter classic “O 

Christmas Tree” goes… 

Probability tree, probability  tree, 
We multiply across thee. 
And when we’re done, we can sum (+) down, 
All the products (x), that we have found. 
Probability tree, probability  tree, 
We multiply across thee. 

 

An independent event, is one where separate goes 
don’t effect each other. For example, rolling a dice, 
won’t change the probabilities for a second roll of 

the dice. 
 

Now we will look at dependent events. 

 
7) Tree Diagrams of Dependent Events 

 
Dependant events are ones where the outcome of 
the first event has an effect on the second event. 

 
Let’s say there are 3 green counters and 7 blue 

counters in a hat. 
 
 
 

 

 

 

 

 

If we pick a counter at random (no peeking!) we get 

the following probabilities. 

P(Green) = 
3

10
 

P(Blue) = 
7

10
 

If we put the counters back and do a second pick we 

will get the same number of counters of each colour 

and so the same probabilities. So these two picks 

would be independent events. 

 



However, if we do not put the counter back for the 

second pick, then the probabilities for the second 

pick depend on whether we picked a green or a blue 

counter on our first pick. This is because if we 

picked a blue first there will be one less blue counter 

for the second pick (as well as one less counter 

overall) meaning a lower chance of getting a blue. If 

we picked a green counter on the first pick then 

there will be one less green counter (as well as one 

less counter overall) and so a lower chance of 

getting a green on the second pick. 

This type of event pairing is called a dependent 

event. The probabilities for the second event are 

dependent on what happens in the first event. 

So let’s look again at our hat with 3 green and 7 blue 

counters, and construct an independent event tree 

diagram for two picks from the hat when we do put 

the first counter back. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Let’s just work out the probabilities of each of the 

four possible pairs of outcomes: Green/Green; 

Green/Blue; Blue/Green; and Blue/Blue; then add 

them up to be sure they make 1, and that this is a 

consistent group of probabilities. 

 

 

 

 

 

 

 

 

 

 

 

9

100
+

21

100
+

21

100
+

49

100
=

100

100
= 1 

 

But what happens if we don’t put the counter back 

between picks. The outcome of the first pick, will 

effect the outcome of the second pick. Let’s say we 

are interested in the probability of the second pick’s 

outcome being blue. If the first pick was blue then 

the hat looks like this… 

 

 

 

 

 

 

 

So after first picking a blue, we have 3 greens and 6 

blues left. 

So P(Blue) = 
6

9
=

2

3
 

If however we had picked a green on the first pick 

the hat would like this. 

 

 

 

 

 

 

 

 

Pick 1 

B 

G 

Pick 2 

B 

G 
P(G/G) = 

9

100
 

P(G/B) = 
21

100
 

P(B/G) = 
21

100
 

P(B/B) = 
49

100
 B 

G 

Pick 1 

B 

G 

Pick 2 

B 

G 

B 

G 

 

One less blue 

that was 

removed on 

the first pick 

 

One less green 

that was 

removed on the 

first pick 



So after picking a green, we have only two greens 

left, and seven blues. 

In the case P(Blue) = 
7

9
 

In this way, adjusting the second picks based on how 

the outcomes of the first pick affect the numbers of 

greens and blues we can build a tree diagram for 

these two dependent events. 

 

 

 

 

 

 

 

Again let’s find the probabilities of each of the four 

possible pairs of outcomes: Green/Green; 

Green/Blue; Blue/Green; and Blue/Blue; then add 

them up 

 

 

 

 

 

 

 

 

6

90
+

21

90
+

21

90
+

42

90
=

90

90
= 1 

It is worth noting that some of these “end” 

probabilities can be simplified, but it is soften easier 

not to simplify them with tree diagrams, so that if you 

end up adding the “end” probabilities because of an 

“or” question then you already have fractions with 

common denominators. 

 

Finally let’s use this tree diagram to find the 

probability that both picks are the same colour 

(when we don’t put the first counter back after the 

first pick). 

 

So the probability of a green then a green 

(represented on the tree diagram below as the 

purple pathway) is found by 

P(Green/Green) = 
3

10
×

2

9
=

6

90
 

 

 

 

 

 

 

 

And the probability of picking two blues 

(represented on the tree diagram below as the 

orange pathway) is 

P(B/B) = 
7

10
×

6

9
=

42

90
 

 

So P(both same colour) = 
6

90
 + 

42

90
 = 

48

90
=

24

45
=

8

15
 

Finally it is worth noting that you don’t always need 

to draw a tree diagram. 

For example there are 2 orange, 3 red, and 1 purple 

counter in a hat. What is the probability of picking 3 

reds in a row? 

Firstly if we do this with putting the counters back as 

independent events.  

To draw the whole three stage tree diagram with 3 

branches for each event would be very complex! 

 

 

 

 

 

 

 

 

This is mega complex even without the outcomes 

and probabilities written in. 

Pick 1 

B 

G 

Pick 2 

B 

G P(G/G) = 
6

90
 

P(G/B) = 
21

90
 

P(B/G) = 
21

90
 

P(B/B) = 
42

90
 B 

G 

Pick 1 

B 

G 

Pick 2 

B 

G 

B 

G 

Pick 1 

B 

G 

Pick 2 

B 

G 
P(G/G) = 

6

90
 

P(B/B) = 
42

90
 B 

G 



But we can work out many things without drawing  

the diagram. 

When putting the counters back each time, the 

probability of picking a red each time is 
1

6
 

P(3 consecutive reds) = 
3

6
×

3

6
×

3

6
=

27

216
=

9

72
=

1

8
 

You may be screaming that it is way simpler to work 

simplify P(Red) = 
3

6
=

1

2
 and then do 

P(3 consecutive reds) = 
1

2
×

1

2
×

1

2
=

1

8
 

And you’d be right, in this example it is much easier 

to simplify the fraction first! 

But finally let’s look at the case where you do not put 

the counter back each time. Surely here we have to 

draw the big horrible 27-pointed probability tree 

because the probabilities change each time. 

Well no we don’t. 

P(3 consecutive reds without replacement)  

=
3

6
×

2

5
×

1

4
=

6

120
=

1

20
 

 

 

 

 

 

 

P(3 Reds) =  
1

20
 

 

On each consecutive 
pick we simply have 
one less red (-1 from 

top), and one less 
counter over all (-1 

from bottom). 


