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Step 1) True Equations 
 

You have been using equations in maths for a long 
time. 

 

For example 2 × 3 = 6 
and 2 × 3 = 7 

are both equations. One of them is true and one of 
them is false. It is true to say that 2 × 3 = 6 because if 

you got two lots of 3, you have 3 + 3 which makes 6 
(not 7). So 2 × 3 = 7 is false. 

 
Here we are going to look at how equations involving 

variable numbers (represented as letters) can be 
false or true. 

  
In ladder s we saw that there are some very special 
types of equations where both expressions (on each 
side of the equation) are always the same whatever 

the value of the variables. 
 

for example 2𝑥 + 3𝑥 ≡ 5𝑥 
 

This is always true whatever value of x we look at. 
 

But these special ≡ equations are not the type we 
usually work with. 

 
There are an infinite number of equations that are 

only true for certain values of the variable. 
 

2𝑥 + 1 = 7 
 

This is true for some values of x and false for others. 
 

 LHS RHS 
True/False 

 2𝑥 + 1 7 

When 
𝑥 = 1 

3 7 
False as 

3 ≠ 7 

When 

𝑥 = 2 
5 7 

False as 

5 ≠ 7 

When 

𝑥 = 3 
7 7 

True as 

7 = 7 

When 

𝑥 = 4 
9 7 

False as 

9 ≠ 7 

When 

𝑥 = 5 
11 7 

False as 

11≠ 7 

   
You can see that the equation 2𝑥 + 1 = 7 is true when  

𝑥 = 3, and is false for the other four values of x we 
tried. In fact this equation is only true when 𝑥 = 3. 

 
We have a short word for this true value, we call a 

value of the variable for which the equation is true a 

solution. So here 𝑥 = 3 is a solution of the equation 
2𝑥 + 1 = 7 (because this equation is true when 𝑥 = 3) 

 
We will later discover that linear equations have a 

maximum of 1 solution, quadratics have a maximum 
of 2 solutions, cubics a maximum of 3 solutions and 

so on. 
 

Let’s look at a quadratic equation now. 
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𝑥2 = 25 
 

This equation is true when 𝑥 = 5 and also when 
𝑥 = −5. Now we told you just above that quadratics 
have a maximum of 2 solutions, but let’s try a few 

more just to take a look out of interest. 
 

 LHS RHS 
True/False 

 𝑥2 25 

When 
𝑥 = 3 

9 25 
False as 

9 ≠ 25 

When 

𝑥 = −3 
9 25 

False as 

9 ≠ 25 

When 

𝑥 = 4 
16 25 

False as 

16 ≠ 25 

When 
𝑥 = −4 

16 25 
False as 
16 ≠ 25 

When 

𝑥 = 5 
25 25 

True as 

25 = 25 

When 
𝑥 = −5 

25 25 
True as 
25 = 25 

When 

𝑥 = 6 
36 25 

False as 

36 ≠ 25 

When 

𝑥 = −6 
36 25 

False as 

36 ≠ 25 

When 
𝑥 = 7 

49 25 
False as 
49≠ 25 

When 

𝑥 = −7 
49 25 

False as 

49≠ 25 

 
To summarise, an equation is either true or false 

when we substitute in a particular value of the 
variable. If it is true, then this value is called a 

solution for that equation. 
 

It turns out that these “solutions” for equations that 
represent or express real life situations, very often 

help us to solve the actual real life problem that 
those equations express. For this reason 

mathematicians spend a lot of time learning how to 
find the solution(s) to an equation, in other words 
finding the value(s) that make an equation true. 

 
You can create a very complicated true equation by 

starting with the solution. Let’s say you want to make 
a true equation whose solution is 𝑥 = 3 

 
We simply do things (like +1, or square, or x7) to both 
sides of the equation. If the LHS and RHS (Left Hand 

Side and Right Hand Side) of an equation are the 
same, then if we do the same thing to each of them, 
the LHS and the RHS of the new equation we create 

will be the same (in other words the new equation 
will be true if the one we started with was true). 

 

Equation Do Notes 

𝑥 = 3 (x2) 
LHS 𝑥 × 2 ≡ 2𝑥 

RHS 3 × 2   ≡ 6 

2𝑥 = 6 (+7) 
LHS2𝑥 +7 ≡ 2𝑥 + 7 

RHS  6 +7 ≡ 13 

2𝑥 + 7 = 13   

 

All the equations are true when x = 3, this includes  
2x = 6 and 2x + 7 = 13 

 
Let’s try something a little more complex, but still 

starting with x = 3. 
 

Equation Do Notes 

𝑥 = 3 (square) 
LHS 𝑥 × 𝑥 ≡ 𝑥2 

RHS   32 ≡ 9 

𝑥2 = 9 (x2) 
LHS 𝑥2 × 2 ≡ 2𝑥2 

RHS 9 × 2 ≡ 18 

2x2 = 18 (-1) 
LHS 2𝑥2 −1 ≡ 2𝑥2 − 1 

RHS 18 −1 ≡ 17 

2x2 − 1 = 17 (+7x) 
LHS 2𝑥2 − 1 +7𝑥 

≡ 2𝑥2 + 7𝑥 − 1 
RHS 17 +7𝑥 ≡ 7𝑥 + 17 

2x2 + 7x − 1 = 7x + 17  

 

This very complex equation 2x2 + 7x − 1 = 7x + 17  
is still true when x = 3 

 
Step 2) Solving Equations by Trial & Improvement 

with Whole Nos 
 

Solving an equation is the process of trying to find 
the solutions of that equation, or the values of the 

variables that make the equation true. 
 

Many simple equations can be solved simply by 
spotting what the solution is. 

 

𝑥 + 2 = 5 
 

If you have a good sense of number you might be 

able to spot that as 3 + 2 = 5 so 𝑥 = 3 is the solution 
to our equation. 

 
If you can’t spot it you could try trial and 

improvement. This is where you try a value of x and, 
if it didn’t make the equation true, you then decide 

from the substitution whether to next try a bigger or 
smaller value of x next. 

 LHS RHS 
True/False 

 𝑥 + 2 5 

Try 𝑥 = 1 3 5 
False, try 

bigger 

Try 𝑥 = 2 4 5 
False, try 

bigger 

Try 𝑥 = 3 5 5 TRUE 

 
Generally if our substitution is too small we try a 

bigger value of x, though sometimes (like when there 
are negative numbers involved) this can have the 

opposite effect. 
 

Let’s try and find the solution for another equation 
 

7𝑥 = 56 
 

 LHS RHS 
True/False 

 7𝑥 56 

Try 𝑥 = 5 35 56 False, try 



bigger 

Try 𝑥 = 6 42 56 
False, try 

much 
bigger 

Try 𝑥 = 9 63 56 
False, try 
smaller 

Try 𝑥 = 8 56 56 TRUE 

 
Now if you know your times tables particularly well 

you might have spotted that 7 × 8 = 56 as soon as 
you saw the equation, and from this known that 𝑥 = 8 

was the solution to this equation.... but what about 
when the equation has 2 terms, or quadratic terms, 
or the answer is a decimal, it becomes harder and 

harder to “spot”solutions. 
 

Let’s try another equation 
 

7x − 6 = 57 
 

 LHS RHS 
True/False 

 7𝑥 − 6 57 

Try 𝑥 = 5 29 57 
False, try 

much 
bigger 

Try 𝑥 = 8 50 57 
False, try a 
bit bigger 

Try 𝑥 = 9 57 57 TRUE 

 

So the value x = 9 makes the equation 7x − 6 = 57 
true, it is the solution to this equation. 

 

Now 7 × 2.63 − 7.58 = 10.83 
 

Which means that the solution to the equation  
7x − 7.58 = 10.83 

is x = 2.63 
 

We’ll see later on in step 8 that we can solve many 
equations in this way, but when we look at decimals 

(or quadratics or cubics that have multiple solutions) 
things are going to get very complicated. We need a 

method that allows us to solve equations without 
having to try loads of different values. A method that 

could quickly and easily solve an equation like 
7x − 7.58 = 10.83 

 
Step 3) Solving Equations with Inverses 

 
To solve an equation you just take the inverse. 

 
This rather fancy word inverse just means the 

opposite. 
 

+3 and -3 are inverses (or opposites) 
 

x7 and ÷7 are inverses 
 

-1.5 and +1.5 are inverses 
 

÷3.1 and x3.1 are inverses. 
 
 
 

So if we look at the equation  
2x + 7 = 13 we created in step 1... 

 

Equation Do Notes 

x = 3 (x2) 
LHS    x × 2 ≡ 2x 
RHS   3 × 2 ≡ 6 

2x = 6 (+7) 
LHS 2x + 7 ≡ 2x + 7 

RHS 6 + 7 ≡ 13 

2x + 7 = 13   

 
We simply do the inverse operations in the opposite 

order. 
 

So to create 2x + 7 = 13, we started with the solution 

x = 3, then x2, then +7. So we do the inverses in the 
opposite order, first -7, then ÷2. 

 

Equation Do Notes 

2x + 7 = 13 (-7) 
LHS 2x + 7 − 7 ≡ 2x 

RHS 13 − 7 ≡ 6 

2x = 6 (÷2) 
LHS 2x ÷ 2 ≡ x 
RHS 6 ÷ 2 ≡ 3 

x = 3   

 
We didn’t actually need to know that the solution was  

x = 3 to do this, we can solve the equation starting 
from the equation and getting to the solution. 

Without the notes we can simply write... 
 

2x + 7 = 13 (-7) 

2x = 6 (÷2) 

x = 3  
 

Looking at the order we substitute into  
2x + 7 = 13 we can establish the “forwards” order is 

x2, +7, so the inverse order is -7, then ÷2! 
 

Now for this equation 2x + 7 = 13 it might be easier to 

just spot the answer, trying  x = 1, x = 2, x = 3. but 
what about for 7x − 7.58 = 10.83 

 
Well the forwards order is x7, then -7.58, so the 

inverse order is +7.58 then ÷7. 
 
 

Equation Do Notes 

 7x − 7.58 = 10.83 (+7.58) 
LHS 7x − 7.58 + 7.58 ≡ 7x   
RHS 10.83 + 7.58 ≡ 18.41 

7x = 18.41 (÷7) 
LHS 7x ÷ 7 ≡ x 

RHS 18.41 ÷ 7 ≡ 2.63 

x = 2.63   

 
Without the notes we can just write... 

7x − 7.58 = 10.83 (+7.58) 

7x = 18.41 (÷7) 

x = 2.63  
 
 
 
 
 
 
 



Step 4) Solving Eqns with Variables Both Sides 
 

5x − 3 = 2x + 15 
 

We can’t do this exactly as we did the others 
because there is no specific order in which we would 

substitute to find our forwards order.  
 

The problem is that we have two variable terms, one 
on each side of the equation. If we were on the same 
side we’d just collect them together like in step 4 of 
the expressions ladder on collecting like terms, but 

they are on opposite sides! The solution is that either 
of these terms could be removed by doing the 

inverse operation, and that would mean that the 
inverse term appeared on the other side. We are 
effectively moving the term from one side to the 
other. So we would either start by inversing 2x, 

which as it is positive means we inverse by doing -2x. 
Or we could inverse the 5x, which would be -5x. Let’s 

try both. 
 

Equation Do Notes 

  
5x − 3 = 2x + 15 

 

(−2x) 
LHS 5x − 3 − 2x ≡ 3x − 3 

RHS 2x + 15 − 2x ≡ 15 

3x − 3 = 15   

At this point we have a standard linear equation, 
with “forwards” order x3, -3, so the inverse is +3, ÷3 

3x − 3 = 15 (+3) 
LHS 3x − 3 + 3 ≡ 3x 

RHS 15 + 3 ≡ 18 

3x = 18 (÷ 3) 
LHS 3x ÷ 3 ≡ x 
RHS 18 ÷ 3 ≡ 6 

x = 6   

 
Or lets try cancelling the 5x, by starting with a -5x 

step. 
 

Equation Do Notes 

  
5x − 3 = 2x + 15 

 

(−5x) 
LHS 5x − 3 − 5x ≡ −3 

RHS 2x + 15 − 5x 
≡ −3x + 15 

−3 = −3x + 15   

At this point we have a standard linear equation, with 
“forwards” order x-3, +15, so the inverse is -15, ÷-3 

−3 = −3x + 15 (−15) 
LHS −3 − 15 = −18 

RHS −3x + 15 − 15 ≡ −3x 

−18 = −3x (÷ −3) 
LHS −18 ÷ −3 ≡ 6 

RHS −3x ÷ −3 ≡ x 

6 = x which means the same as 

x = 6  

 
 

The first of these methods minimises the use of 
negative numbers, so one of the ways is easier, 
though both work. Without the notes, using the 

“easier method” it would look like this... 

5x − 3 = 2x + 15 (−2x) 

x − 3 = 15 (+3) 

3x = 18 (÷ 3) 

x = 6  

Step 5) Formulae 
 

A formula is a special type of equation that we use to 
calculate something useful, we call this useful thing 
the subject. Formulae usually have more than one 

variable. 
 

For example the formula for the area of a rectangle 
is given as 

 
Where A = the area of the rectangle 

b = the length of the base of the rectangle 
h = the height of the rectangle 

 
A = b x h 

 
Here A is the subject. 

 
So for some particular rectangles, when we know 
the base and the height we can work out the Area. 

 
The formula for calculating a missing angle c in a 

triangle is c = 180 – a – b where a & b are the other 
two angles in the triangle. Here c is the subject of 

the formula. 
 

We have many formulae within maths for quickly 
calculating many different things, and many more 

still within the sciences. 
 

Let’s look out a formula without a context. 
 

m = 4y – 3p 
 

To find m (the subject) in a given situation we need to 
know y and p, and we must take 3p away from 4y. 
Every time we know the value of p and y in a given 
situation we can then easily calculate m using this 

formula. 
 

Let’s take 3 different situations where we know y 
and p and find m. 

 

  4y 3p m 

Situation 
1 

y=2 
p=1 

8 3 5 

Situation 
2 

y=1 
p=2 

4 6 -2 

Situation 
3 

y=5 
p=-2 

20 -6 26 

 
We can also use the same formula given the value of 
the subject and some other variable(s). We can then 

form an equation to solve to find the value of an 
unknown variable. 

 
Let’s take another situation where the formula 

m = 4y – 3p applies. 
If we know that m = 25  and p = 1 

Then we can form equation... 
 

25 = 4y – 3 
 
 m = 25 

p = 1 
-3p = -3 



 
We then solve the equation 25 = 4y – 3 

 
25 = 4y – 3 (+3) 

28 = 4y (÷4) 
7 = y (swap LHS & RHS) 
y = 7  

 
We will see in the next step, that if we had lots of 

values of m and p, we could rearrange our equation 
to make y the subject. 

 
6) Changing the Subject of a Formula 

 
At the end of the last step we substituted in a value 

of m and p to the equation m = 4y – 3p 
 

We then solved the equation formed to find the value 
of y needed to solve this equation. But if we had lots 
of values of m and p, we could rearrange the formula 

to make y the subject. 
 

The forwards order for y is x4, then -3p, so we need 
to +3p then ÷4 

 

m = 4y − 3p (+3p) 

m + 3p = 4y (÷4) 

m + 3p

4
= y Swap LHS & RHS 

y =
m + 3p

4
  

 
Let’s look at example  

2x2 − 3m = 7 which is quadratic with x. Forwards 
from x we square, then x2, then -3m, so the inverse is 

+3m, ÷2, then √ square root, 
 

2x2 − 3m = 7 (+3m) 

2x2 = 3m + 7 (÷2) 

x2 =
3m + 7

2
 √ 

x = √
3m + 7

2
  

 
Sometimes we have the new subject variable in more 
than one term, for this we need to collect them 
together and factorise.  
 

px − 7k = 2vc + 5x (+7k) 

px = 2vc + 5x + 7k (-5x) 

px − 5x = 2vc + 7k (Factorise) 

x(p − 5) = 2vc + 7k (÷(p-5)) 

x =
2vc + 7k

p − 5
  

 
 
 
 
 

Step 7) Inequalities 
 

We have learned a lot about things that are equal. 
We have seen that some things are always equal like 

2 × 3 = 6 and 2𝑥 + 5𝑥 = 7𝑥. Here we can use the triple 
equals sign to represent that they are always equal 

2 × 3 ≡ 6   and   2𝑥 + 5𝑥 ≡ 7𝑥, whatever the value of x. 
 

We have learned that other things are sometimes 

equal. 5𝑥 + 7 = 22 only and exactly when 𝑥 = 3. Any 
other value of x leaves this equation untrue. 

 
We also know that some things are not equal. For 
example 3 is not equal to 7 – 1. We can either say 

that the equation  7 − 1 = 3 is false, or we can use the 

not equal symbol 7 − 1 ≠ 3. 
 

There is another type of relationship between 
numbers that helps us talk about them. Not only if 

they are equal or not, but in the situation where they 
are not equal, which one is bigger. 

 
We use the symbols > and < to notate numbers that 
are not equal when we know which one is bigger. 

 
We always put the smaller number at the point end of 

the symbol, and the large end at the double end of 
the symbol. One nice way to remember this is that 

there’s a larger distance at the double end.  
 
 
 
 

You can also think of the inequality (literally meaning 
not equal, or in-equal) symbol as a set of teeth 

saying the little number is eats the bigger number. 
 
 

 
 
 
 
So we can say that seven is less than 12 simply as 

7 < 12,  and    100 < 3,476,      345 > 9,   7 > −3,   and 
−23 < −5. 
 
However this has a greater use within algebra, for 
working with variable numbers. 
 

If we know that x > 5 and x is a whole number than x 
could be 6, 7, 8, 9, 10... 
 
If x could be a decimal then it could also be 5.1, 
5.00001, 5.9, 8.7 and many other possibilities. 
 
It is easier to understand the numbered list 6, 7, 8, 9, 
10... than the decimal version, so when we are 
talking about all decimals bigger or smaller than a 
certain number we can use an inequality diagram. 
x > 5 is represented by the diagram... 
 
 
 
 

< bigger distance 

bigger number 
smaller distance 
smaller number 

big number little number  < 

5 



 
And x < 2 by diagram 
 
 
 
 
 
With algebraic inequalities, it can sometimes be 
useful to say that a number is greater than or equal 
to. That means it might be bigger than, or equal to 
the other number but cannot be smaller than it. 
 

We use the symbol x > 5 to not include 5 as a 

possibility, and x ≥ 5 (read x is greater than or equal 
to 5) to show that it is. So if they were whole 

numbers x > 5 means x = 6, 7, 8, 9, 10 … 
and x ≥ 5 means x = 5,6, 7, 8, 9 … 
 
On a number line including all the decimals (not just 
whole numbers) we represent this by filling in the dot 

representing the 5. So x ≥ 5 is represented by 
 
 
 
 

and x ≤ 2 by diagram 
 
 
 
 
 
We can solve inequalities just like we solve 
equations. 
 
Earlier we solved 2𝑥 + 7 = 13 to find the solution was  

𝑥 = 3 
 

2𝑥 + 7 = 13 (-7) 

2𝑥 = 6 (÷2) 

𝑥 = 3  
 

But if we make x a little bigger then they value of 

2𝑥 + 7 will become a little bigger, in other words a 
little bigger than 13 
 
So if 2𝑥 + 7 > 13 we know that 𝑥 > 3 

Similarly if 2𝑥 + 7 < 13 we know that 𝑥 < 3 
 
We can work with inequalities as with equations 
(with one exception below) because if we double 
both sides, the bigger side will still be bigger, and if 
we +3 to both sides the same is still true and so on... 
 

So we can solve 2x + 7 < 13 by doing 
 

2x + 7 < 13 (-7) 

2x < 6 (÷2) 

x < 3  
 
And So we can solve 2x + 7 < 13 by doing 
 

2x + 7 < 13 (-7) 

2x < 6 (÷2) 

x < 3  

The exception then is if we x or ÷ by a negative 
number. Because for example −2 < −1 but 1 < 2 the 
inequality actually flips directions if we x or ÷ by a 
negative number. We can solve most inequalities 
simply by working around this.  
 
Similarly squaring both sides can cause a problem if 
one side of an inequality was negative, as, for 

example, (−2)2 = 22 = 4. 
 

Step 8) Solving Equations by Trial & Improvement 
with Decimals 

 

𝑥3 + 3𝑥2 = 26 can’t be solved simply by rearranging 
the equation, but we can keep making better and 
better guesses to get a good idea of the solution. 
 
Here we’ll try and first narrow down the whole 
number solution, then to 1dp, then to 2dp. 
 

Try 
LHS RHS LHS too 

big/small 
Means 

𝑥3 + 3𝑥2 26 

𝑥 = 2 20 26 small 𝑥 > 2 

𝑥 = 3 50 26 big x < 3 

So 2 < x < 3 now test midpoint 

𝑥 = 2.5 34.375 26 big x < 2.5 

So 𝑥 = 2 (nr whole no.) 

𝑥 = 2.1 22.491 26 small x > 2.1 

𝑥 = 2.2 25.168 26 small x > 2.2 

𝑥 = 2.3 28.037 26 big x < 2.3 

So 2.3 < x < 3 now test midpoint 

𝑥 = 2.25 26.578 26 big 𝑥 < 2.25 

𝑥 = 2.2 (1𝑑𝑝) 

𝑥 = 2.24 26.292 26 big 𝑥 < 2.24 

𝑥 = 2.23 26.008 26 big 𝑥 < 2.23 

𝑥 = 2.22 25.726 26 small 𝑥 > 2.22 

So 2.22 < 𝑥 < 2.23, now test midpoint 

𝑥
= 2.225 
 

25.867 26 small 
𝑥
= 2.225 

So 𝑥 = 2.23 (2𝑑𝑝) 

 
So bit by bit, we can move to a more and more 
accurate answer, narrowing it down to two 
consecutive 1dp, 2dp, 3dp possibilities and testing 
the midpoint. 
 

Step 9) Solving Linear Eqns with Fractions 
 
This step is about understanding that fractions are 

just a way of dividing. So 
1

2
x ≡

x

2
 which is x ÷ 2, and 

the inverse of ÷2 is x2. 
 

Equation Do 
1

2
x + 3 = 8 

1

2
x ≡

x

2
 

x

2
+ 3 = 8 (-3) 

x

2
= 5 (x2) 

x = 10  

 
 

2 

5 

2 



Similarly 
3

4
x ≡

3x

4
 which forwards from x is x3, ÷4, so 

the inverse is to x4, then ÷3. 
 

Equation Do 
3

4
x + 2 = 11 

3

4
x ≡

3x

4
 

3x

4
+ 2 = 11 (-2) 

3x

4
= 9 (x4) 

3x = 36 (÷3) 

x = 12  

 
 

10) Solving Simultaneous Equations 
 
When you solve an equation you are finding the 
value(s) of the variable that makes the equation true. 
Solving simultaneous equations is finding the values 
of the variable that make a pair of (or more) 
equations both true at the same time. 
 
For example 3x = 15 and 10x = 50 are both true, that 

is they are true simultaneously, when x = 5. But this 
is also the solution for each of those equations 
without each other. For equations with more than 
one variable, you can often find specific solutions 
that make them true at the same time. 
 
The basis of solving simultaneous equations is doing 
operations until one variable term in each equation 
is either the same (and then subtracting them) or the 
negatives of one another (and then adding them). 
 
Let’s start with an example where the y term in each 
equation is already the same. 
 
 

Do Equation Name 

 2x + 3y = 8 a 

 5x + 3y = 11 b 

b – a 3x = 3 c 

- two equations means to do RHS - RHS 
to form the new RHS, and LHS - LHS to 

make the new LHS 

c÷3 x = 1  

sub x = 1 
into a 

2 + 3y = 8  

(-2) 3y = 6  

(÷3) y = 2  

 
So the solution to these simultaneous equations is  
x = 1  and y = 2. This pair of values make both 
equations (a and b) true simultaneously. 
 

2x + 3y = 8 gives 2 + 6 = 8 which is true and 
5x + 3y = 11 gives 5 + 6 = 11 which is also true! 
 
 
 
Let’s try and example where the two variables are 
the negatives of one another, here we add the 
simultaneous equations. 

 
 
 

Do Equation Name 

 4x + 5y = 23 a 

 2x − 5y = −11 b 

a + b 6x = 12  

+ two equations means to do RHS + RHS to 
form the new RHS, and LHS + LHS to make 

the new LHS 

(÷6) x = 2  

sub x = 2 
into a 

8 + 5y = 23  

(-8) 5y = 15  

(÷3) y = 3  

So here the solutions are x = 2 and y = 3 
 
Again it is important to understand that this pair of 
values are a solution because they make both 
equations true simultaneously (at the same time). 
 

4x + 5y = 23 gives 8 + 15 = 23 and 
2x − 5y = −11 gives 4 − 15 = −11, both are true! 
 
It might be that the equations can’t just be added or 
subtracted to cancel a term... then we look for a 
term that can be multiplied up to the “size” of 
another term. 
 

Do Equation Name 

 2x + 2y = 8 a 

 6x + 3y = 18 b 

3a 6x + 6y = 24 c 

c – b 3y = 6  

(÷3) y = 2  

sub y = 2 
into a 

2x + 4 = 8  

(-4) 2x = 4  

(÷2) x = 2  

 
So here x = 2 and y = 2. Mentally check if they make 
equations a and b true... They do! 
 
Sometimes we have to adjust both equations to get 
two equations where the terms will cancel by + or – 
the equations. 
 

Do Equation Name 

 2x + 5y = 8 a 

 4y − 3x = 11 b 

ax3 6x + 15y = 24 c 

bx2 8y − 6x = 22 d 

c + d 23y = 46  

(÷23) y = 2  

sub y = 2 
into a 

2x + 10 = 8  

(-10) 2x = −2  

(÷2) x = −1  

So the solution is x = −1 and y = 2. 
 
Finally, sometimes one of the equations is a 
quadratic. Then we can substitute the linear one, 
into the other, and solve it. 



 
 

Do Equation Name 

 x2 + y2 = 25 a 

 y = 2x − 2 b 

sub b into a x2 + (2x − 2)2 = 25  

Multiply 
brackets 

x2 + (4x2 − 8x + 4) = 25  

Simplify 
LHS 

5x2 − 8x + 4 = 25  

(-25) 5x2 − 8x − 21 = 0  

You will be learning to solve quadratics in the 
next two steps, but here goes... 

Factorise 
LHS (see 
next two 

steps) 

(5x + 7)(x − 3) = 0  

One bracket 
is 0 

x − 3 = 0 c 

(+3) x = 3  

Or the other 
bracket is 0 

or 5x + 7 = 0 d 

(-7) 5x = −7  

(÷5) x = −
7

5
  

So x = −
7

5
 and x = 3 are the two x solutions. We can 

sub them into equation b to find the matching y 
solutions. 
 
When x = 3, then y = 2x − 2 = 6 − 2 = 4 
 
So x = 3 and y = 4 is one solution pair. 
 

So x = −
7

5
, then y = 2x − 2 = −

14

5
−

10

5
= −

24

5
 

And x = −
7

5
, and y = −

24

5
 is the other. 

 
11) Solving Quadratic Equations when a=1 

 
We have already learnt in the brackets ladder how to 
multiply out two linear brackets to make a quadratic, 
and when possible, how to factorise a quadratic to 
make two multiplied linear bracket factors. 
 
Multiplying out we learn that... 

(x + 3)(x + 2) ≡ x2 + 5x + 6 
 
And factorising we learn that... 

x2 + 5x + 6 ≡ (x + 3)(x + 2) 
 

In other words the expression x2 + 5x + 6 and the 
expression (x + 3)(x + 2) are effectively the same 
thing, and so can be swapped for each other (in 
brackets) in any situation. 
 
Using factorisation a quadratic equation becomes 

possible to solve! Let’s try and solve x2 + 5x + 6 = 0 
Because of what we learned above the LHS can be 
swapped for (x + 3)(x + 2) 
 

So solving x2 + 5x + 6 = 0 will give the same solutions 

as solving (x + 3)(x + 2) = 0 

or indeed solving (x + 2)(x + 3) = 0 

This is where there is one further thing to 
understand. We have now two brackets multiplied 
together that make 0. When the product (result of 
multiplying) two numbers is 0, one of the numbers 
must be 0. 
 
Let’s look at two numbers a and b, and say that when 
we multiply them they make 0. 
 
Here are some examples that make 0 when 
multiplied. 
 

a b ab 

0 0 0 

0 7 0 

9 0 0 

0 23.7 0 

0 -19 0 

5 0 0 

3π 0 0 

0 7e 0 

 
Here are some examples of a and b that don’t make 0 
when multiplied. 
 

a b ab 

1 2 3 

3 7 21 

9 4 36 

2 23.7 47.4 

3 -19 -57 

5 20 100 

3π 7 21π 

4 7e 28e 

 
You can see the thing in common for the ones that do 
make 0, is that at least one of the numbers a and b is 
0. From the second group you can see that when 
neither of them is 0, they won’t multiply to make 0. 
 
This makes total sense. If we multiply 0 by 
something, we are taking 0 of that thing, which will 
make zero. If we multiply a number that is not 0 by 
something, we will be getting a multiple of something 
(or part of something if it is between -1 and 1) which 
is definitely something, unless that is a 0 part. If we 
take no part of something, we have nothing. 
 
To summarise, if the multiple of two numbers is 0, 
then at least one of those numbers must be 0. 
 
Because our two brackets are simply numbers that 
multiply to make zero, they are like a and b in the 
above explanation. When two brackets multiply to 
make 0, one of those brackets must be 0. 
 

So with (x + 3)(x + 2) = 0 
 
We know that make 0 (on the RHS) either 
 

x + 3 = 0  or   x + 2 = 0 
 



And each of these are simple linear equations that 
we already know how to solve. 

 
 
 
 
 
 
 

So the solutions of the equation x2 + 5x + 6 = 0 and 

the equation (x + 3)(x + 2) = 0 are 

x = −3  and 𝑥 = −2   
 
After all that clever calculation, let’s just check that 
the solutions do make the LHS = 0. 
 

When x = −3 

x2 + 5x + 6 = 0 

Gives  9 − 15 + 6 = 0 
Which is true! 

 

When x = −2 

x2 + 5x + 6 = 0 

Gives  4 − 10 + 6 = 0 
Which is true! 

 
Hey presto we have just solved our first quadratic 

equation. 
 

Let’s try one more... 
 

x2 − 3x − 10 = 0 
First we factorise the LHS to give 

(x − 5)(x + 2) = 0 

Because for two numbers multiplying to make 0 one 
of them must be zero, one of the linear bracket 

factors on the left hand side must be 0 so either... 
 

x − 5 = 0  or   x + 2 = 0 
 

And each of these are simple linear equations that 
we already know how to solve. 

 
 
 
 
 
 
 

So the solutions of the equation x2 − 3x − 10 = 0 
and (x − 5)(x + 2) = 0 are the same, they are 

x = 5  and 𝑥 = −2. Check them to see if they make our 
original equation true. 

 
The key steps to solving a quadratic are. 

 
Step 0) Rearrange to see that your LHS is a 

quadratic and your RHS is 0 
Step 1) Factorise the LHS 

Step 2) Set each linear bracket factor equal to 0 
Step 3) Solve these two linear equations 

 
 
 

12) Solving Quadratic Equations when a≠1 
 

For factorising quadratics, it is made significantly 
harder when your quadratic coefficient, your 

multiple of x2 is anything other than one. For solving 
equations, it is not more difficult, as long as you have 

become fluent in factorising these more complex 
quadratics.  

 

Let’s try and solve 2x2 + 11x + 5 = 0 
 

Factorising the LHS we get 
(2x + 1)(x + 5)  = 0 

 
We now know that because make 0 (on the RHS) 
either(2x + 1) &  (x + 5) multiply to make 0, one of 

them must be 0 so either... 
 

2x + 1 = 0  or   x + 5 = 0 
 

Let’s solve them 
 
 
 
 

 
 
 
 

So the solutions of 2x2 + 11x + 5 = 0 

and (2x + 1)(x + 5)  = 0 are the same, they are x = −
1

2
   

and 𝑥 = −5   
 

Step 13) Solving Quadratics by Completing the 
Square 

 
In the ladder on brackets you learned to put 

quadratics in a form called a completed square. In 
this form you get a single bracket squared, plus 

(positive or negative) a constant. 
 

Because we don’t have two different brackets (as in 
the factorised examples above) we can use this 

completed square form to solve equations by 
rearranging (just like quadratics that have a 

quadratic but not a linear term. 
 

Equation Do Notes 

𝑥2 + 6𝑥 − 7 = 0 
 

Complete 
the 

square 

Use 
𝑏

2
=

6

2
= 3 

So  
(𝑥 + 3)2 − 16 

≡ 𝑥2 + 6𝑥 − 7 

(𝑥 + 3)2 − 16 = 0 
 

(+16)  

 
(𝑥 + 3)2 = 16 

 
(√ )  

𝑥 + 3 = ±4 
 

Solve 
both 

So 𝑥 + 3 = 4  or   

𝑥 + 3 = −4 
 

𝑥 = 1    or    𝑥 = −7 
 

  

 

Equation Do 

x + 3 = 0   (-3) 

x = −3    

 

Equation Do 

x + 2 = 0   (-2) 

𝑥 = −2    

 

Equation Do 

x − 5 = 0   (+5) 

x = 5   

 

Equation Do 

x + 2 = 0   (-2) 

𝑥 = −2    

 

Equation Do 

2x + 1 = 0   (-1) 

2x = −1   (÷2) 

x = −
1

2
    

 

Equation Do 

x + 5 = 0   (-5) 

𝑥 = −5    

 



 

Equation Do Notes 

2𝑥2 + 4𝑥 − 3 = 0 
Complete 

the 
square 

2(𝑥 + 1)2 − 5 

≡ 2𝑥2 + 4𝑥 − 3 

2(𝑥 + 1)2 − 5 = 0 (+5)  

 

2(𝑥 + 1)2 = 5 
(÷2)  

(𝑥 + 1)2 =
5

2
 (√ )  

𝑥 + 1 = ±√
5

2
 

 

Solve 
both 

So 𝑥 + 1 = √
5

2
  or   

𝑥 + 1 = −√
5

2
 

 

𝑥 = √
5

2
− 1   or 

𝑥 = −√
5

2
− 1     

Or in 
decimals 
(to 3dp) 

So 𝑥 + 1 = 1.581  

or   𝑥 + 1 =
−1.581   

 

𝑥 = 0.581   or 
𝑥 = −2.581    

  

 
Step 14) Solving Quadratics with the Quad Equations 

Formula 
 

Not all quadratics can be factorised, but there is a 
lovely formula that lets us solve many of the 

quadratics that have solutions. Remember that the 
power of x tells us the maximum number of solutions 

to an equation, but there may be less or even no 
solutions. So a quadratic, can have 0, 1 or 2 

solutions, but not 3 or more. 
 

In the last step we saw that the solutions of 
𝑥2 + 6𝑥 − 7 = 0  are   𝑥 = 1  and 𝑥 = −7   

 
And the solutions of  

2𝑥2 + 4𝑥 − 3 = 0 are  𝑥 = √
5

2
− 1   or 𝑥 = −√

5

2
− 1     

 
We’ll now use the formula to find these same 

solutions. After that we’ll show you the wonderful bit 
of mathematics that explains what the formula 
means and where it comes from... it is brilliant! 

Here’s the formula… 
 

The solutions of 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 are 
 

𝑥 =
−𝑏 ± √𝑏2 − 4𝑎𝑐

2𝑎
 

 
 
 

So for our first example 𝑥2 + 6𝑥 − 7 = 0 
Then 𝑎 = 1, 𝑏 = 6, 𝑐 = −7  

Substituting into the formula 

𝑥 =
−6 ± √62 − 4 × 1 × (−7)

2 × 1
 

 

𝑥 =
−6 ± √36 − −28

2
 

 
 

𝑥 =
−6 ± √64

2
 

 

𝑥 =
−6 ± 8

2
 

 

So 𝑥 = 1  and 𝑥 = −7 as required. 
 

And for 2𝑥2 + 4𝑥 − 3 = 0 
 

Then 𝑎 = 2, 𝑏 = 4, 𝑐 = −3  
Substituting into the formula 

𝑥 =
−4 ± √42 − 4 × 2 × (−3)

2 × 2
 

 

𝑥 =
−4 ± √16 − −24

4
 

 
 

𝑥 =
−4 ± √40

4
 

 

𝑥 =
−4

4
±

√40

4
 

 

𝑥 =
−4

4
±

√40

√16
 

 

𝑥 =
−4

4
± √

40

16
 

 

𝑥 = −1 ± √
5

2
 

 
As required! 

 
And here’s where this magical formula comes from. 
You need to be sharp on completing the square, and 

on playing with surds! 
 
 
 
 
 
 
 
 
 
 
 



 

The Quadratic Equations Formula to Solve 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 
 
The y intercept of 𝑦 =  𝑎𝑥2 + 𝑏𝑥 + 𝑐 are when x = 0, this gives y-intercept (0,c). 

 

The x intercepts, known as roots, are found when y = 0, 

and are the solutions of 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0. 

 
Equation Do Notes 

𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 (÷a)  

𝑥2 +
𝑏

𝑎
𝑥 +

𝑐

𝑎
= 0 

complete the 
square 

(𝑥 +
𝑏

2𝑎
)2 −

𝑏2

4𝑎2 +
𝑐

𝑎
= 𝑥2 +

𝑏

𝑎
𝑥 +

𝑐

𝑎
 

(𝑥 +
𝑏

2𝑎
)2 −

𝑏2

4𝑎2 +
𝑐

𝑎
= 0 (+

𝑏2

4𝑎2 −
𝑐

𝑎
)  

(𝑥 +
𝑏

2𝑎
)2 =

𝑏2

4𝑎2 −
𝑐

𝑎
 √   

𝑥 +
𝑏

2𝑎
= ±√

𝑏2

4𝑎2 −
𝑐

𝑎
 (- 

𝑏

2𝑎
) 

Note, as √  give us two possible, a +ve and a –ve 
solution, there are two solutions here represented by the 

± symbol 

𝑥 = −
𝑏

2𝑎
± √

𝑏2

4𝑎2 −
𝑐

𝑎
 

Simplify RHS We now have a usable formula, but the RHS needs to be 
simplified to be in the nice form we are used to seeing it. 

(See further notes below) 

𝑥 =
−𝑏

2𝑎
±

√𝑏2 − 4𝑎𝑐

2𝑎
  Collect the fraction terms with common denominators 

𝑥 =
−𝑏 ± √𝑏2 − 4𝑎𝑐

2𝑎
   

 

 

                                         

  Notes on simplifying the surd. 

Equation Do Notes 

√
𝑏2

4𝑎2 −
𝑐

𝑎
 

Create a common 
denominator 

𝑐

𝑎
= 1

𝑐

𝑎

=
4𝑎

4𝑎

𝑐

𝑎

=
4𝑎𝑐

4𝑎2 

√
𝑏2

4𝑎2 −
4𝑎𝑐

4𝑎2 

And add the 
fractions inside 

the √  

 

√
𝑏2 − 4𝑎𝑐

4𝑎2
 

Use surds to free 
top and bottom 

In general 

√
𝑚

𝑛
=

√𝑚

√𝑛
 

√𝑏2 − 4𝑎𝑐

√4𝑎2
 Simplify Bottom (2𝑎)2

= 2𝑎 × 2𝑎
= 4𝑎2 

√4𝑎2 = 2𝑎 
as 

√𝑏2 − 4𝑎𝑐

2𝑎
 As required!  

 

 Notes on completing the square... 

Equation Do Notes 

First guess is with 
𝑏

2𝑎
 as this is 

half of the linear coefficient 

(𝑥 +
𝑏

2𝑎
)2 = 𝑥2 +

𝑏

𝑎
𝑥 +

𝑏2

4𝑎2 (- 
𝑏2

4𝑎2) 

The first guess 
gives the 
correct 

quadratic and 
linear terms, 

but the 
constant 

needs 
adjusting 

(𝑥 +
𝑏

2𝑎
)2 −

𝑏2

4𝑎2
= 𝑥2 +

𝑏

𝑎
𝑥 (+ 

𝑐

𝑎
) 

Now we have 
constant 0, so 

add the 
constant we 

want (
𝑐

𝑎
) 

(𝑥 +
𝑏

2𝑎
)

2

−
𝑏2

4𝑎2 +
𝑐

𝑎
 

= 𝑥2 +
𝑏

𝑎
𝑥 +

𝑐

𝑎
 

 Hey presto! 

 

𝑥 =
−𝑏 ± √𝑏2 − 4𝑎𝑐

2𝑎
 

Quadratic Equations Formula 
 

Solutions of 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 are 
 

 



 


